Simulate Normal Population Scores for Multiple Items
calculate_proportion.Rd
This function allows you to create normal populations for data that would include repeated measures items. Additionally, the data can be rounded and/or truncated to ensure it matches a target scale - for example, a 1-7 type rating scale.
Arguments
- samples
The bootstrapped samples from your population
- cutoff
The cutoff score for an item to be well measured from the standard errors of your items
- grouping_items
The names of columns to group your data by for the cutoff calculation, usually this column is the item column
- score
The column of the score you wish to calculate for your cutoff score SE
Examples
# step 1 create data like what I think I'll get or use your own
pops <- simulate_population(mu = 4, mu_sigma = .2, sigma = 2,
sigma_sigma = .2, number_items = 30, number_scores = 20,
smallest_sigma = .02, min_score = 1, max_score = 7, digits = 0)
# step 2 calculate our cut off score
cutoff <- calculate_cutoff(population = pops,
grouping_items = "item",
score = "score",
minimum = 1,
maximum = 7)
cutoff$se_items
#> [1] 0.3831998 0.4039281 0.4405439 0.4604060 0.3015312 0.4638228 0.4723959
#> [8] 0.4004931 0.3332456 0.4861232 0.3574397 0.3900067 0.3991768 0.3423987
#> [15] 0.3925289 0.3515005 0.3634629 0.4806793 0.3661679 0.5175855 0.4436689
#> [22] 0.4259664 0.4070109 0.3913539 0.3938675 0.3620119 0.3439324 0.3032716
#> [29] 0.4222434 0.4638228
cutoff$sd_items
#> [1] 0.05510047
cutoff$cutoff
#> 40%
#> 0.3908151
cutoff$prop_var
#> [1] 0.01836682
# step 3 simulate samples
samples <- simulate_samples(start = 20, stop = 100,
increase = 5, population = pops,
replace = TRUE, grouping_items = "item")
# step 4 and 5
proportion_summary <- calculate_proportion(samples = samples,
cutoff = cutoff$cutoff,
grouping_items = "item",
score = "score")
proportion_summary
#> # A tibble: 17 × 2
#> sample_size percent_below
#> <dbl> <dbl>
#> 1 20 0.529
#> 2 25 0.747
#> 3 30 0.903
#> 4 35 0.98
#> 5 40 0.999
#> 6 45 1
#> 7 50 1
#> 8 55 1
#> 9 60 1
#> 10 65 1
#> 11 70 1
#> 12 75 1
#> 13 80 1
#> 14 85 1
#> 15 90 1
#> 16 95 1
#> 17 100 1